Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Cardiovasc Med ; 10: 1066699, 2023.
Article in English | MEDLINE | ID: covidwho-2288955

ABSTRACT

Myocarditis is a rare complication of Coronavirus Disease 2019 (COVID-19) vaccination. We report a case of an elderly female who presented initially with acute myocarditis, fulminant heart failure, and atrial fibrillation after receiving a modified ribonucleic acid (mRNA) vaccine (BNT162b2). Unlike other patients with vaccine-induced myocarditis, she developed persistent fever, sore throat, polyarthralgia, diffuse macular rash, and lymphadenopathy. After extensive investigation, she was diagnosed with post-vaccination Adult-Onset Still's Disease. The systemic inflammation gradually subsided after the use of non-steroidal anti-inflammatory drugs and systemic steroids. She was discharged from hospital with stable hemodynamics. Methotrexate was subsequently given to maintain long-term remission.

2.
J Clin Med ; 12(3)2023 Jan 29.
Article in English | MEDLINE | ID: covidwho-2245328

ABSTRACT

BACKGROUND: Dysnatraemias are commonly reported in COVID-19. However, the clinical epidemiology of hypernatraemia and its impact on clinical outcomes in relation to different variants of SARS-CoV-2, especially the prevailing Omicron variant, remain unclear. METHODS: This was a territory-wide retrospective study to investigate the clinical epidemiology and outcomes of COVID-19 patients with hypernatraemia at presentation during the period from 1 January 2020 to 31 March 2022. The primary outcome was 30-day mortality. Key secondary outcomes included rates of hospitalization and ICU admission, and costs of hospitalization. RESULTS: In this study, 53,415 adult COVID-19 patients were included for analysis. Hypernatraemia was observed in 2688 (5.0%) patients at presentation, of which most cases (99.2%) occurred during the local "5th wave" dominated by the Omicron BA.2 variant. Risk factors for hypernatraemia at presentation included age, institutionalization, congestive heart failure, dementia, higher SARS-CoV-2 Ct value, white cell count, C-reactive protein and lower eGFR and albumin levels (p < 0.001 for all). Patients with hypernatraemia showed significantly higher 30-day mortality (32.0% vs. 5.7%, p < 0.001) and longer lengths of stay (12.9 ± 10.9 vs. 11.5 ± 12.1 days, p < 0.001) compared with those with normonatraemia. Multivariate analysis revealed hypernatraemia at presentation as an independent predictor for 30-day mortality (aHR 1.32, 95% CI 1.14-1.53, p < 0.001) and prolonged hospital stays (OR 1.55, 95% CI 1.17-2.05, p = 0.002). CONCLUSIONS: Hypernatraemia is common among COVID-19 patients, especially among institutionalized older adults with cognitive impairment and other comorbidities during large-scale outbreaks during the Omicron era. Hypernatraemia is associated with unfavourable outcomes and increased healthcare utilization.

3.
Front Med (Lausanne) ; 9: 1096165, 2022.
Article in English | MEDLINE | ID: covidwho-2228701

ABSTRACT

Background: Hyponatremia is common in COVID-19, but its epidemiology and impact on clinical outcomes in relation to different variants, especially the Omicron variant, requires further clarification. Methods: This was a territory-wide retrospective study to investigate the epidemiology and outcomes of COVID-19 patients with hyponatremia from January 1, 2020 to March 31, 2022 in Hong Kong. The primary outcome was 30-day mortality of patients with COVID-19 and hyponatremia at presentation. Secondary outcomes included rate of hospitalization, intensive care unit (ICU) hospitalization, overall duration of hospitalization, and duration of ICU hospitalization. Results: A total of 53,415 COVID-19 patients were included for analysis, of which 14,545 (27.2%) had hyponatremia at presentation. 9813 (67.5%), 2821 (19.4%), and 1911 (13.1%) had mild (130 to <135 mmol/L), moderate (125 to <130 mmol/L), and severe hyponatremia (<125 mmol/L) at presentation respectively. Age, male sex, diabetes, active malignancy, white cell count, serum creatinine, hypoalbuminemia, C-reactive protein, and viral loads were independent predictors for hyponatremia in COVID-19 patients (P < 0.001, for all). Hyponatremic patients had increased 30-day mortality (9.7 vs. 5.7%, P < 0.001), prolonged hospitalization (11.9 ± 15.1 days vs. 11.5 ± 12.1 days, P < 0.001), and more ICU admissions (7.0% vs. 3.3%, P < 0.001). Patients diagnosed during the "fifth wave" Omicron BA.2 outbreak had 2.29-fold risk (95% CI 2.02-2.59, P < 0.001) of presenting with hyponatremia compared to other waves. Conclusion: Hyponatremia is common among COVID-19 patients, and may serve as a prognostic indicator for unfavorable outcomes and increased healthcare utilization in the evolving COVID-19 outbreak.

6.
BMC Public Health ; 21(1): 1878, 2021 10 18.
Article in English | MEDLINE | ID: covidwho-1477403

ABSTRACT

BACKGROUND: Coronavirus Disease 2019 (COVID-19) led to pandemic that affected almost all countries in the world. Many countries have implemented border restriction as a public health measure to limit local outbreak. However, there is inadequate scientific data to support such a practice, especially in the presence of an established local transmission of the disease. OBJECTIVE: To apply a metapopulation Susceptible-Exposed-Infectious-Recovered (SEIR) model with inspected migration to investigate the effect of border restriction as a public health measure to limit outbreak of coronavirus disease 2019. METHODS: We apply a modified metapopulation SEIR model with inspected migration with simulating population migration, and incorporating parameters such as efficiency of custom inspection in blocking infected travelers in the model. The population sizes were retrieved from government reports, while the number of COVID-19 patients were retrieved from Hong Kong Department of Health and China Centre for Disease Control (CDC) data. The R0 was obtained from previous clinical studies. RESULTS: Complete border closure can help to reduce the cumulative COVID-19 case number and mortality in Hong Kong by 13.99% and 13.98% respectively. To prevent full occupancy of isolation facilities in Hong Kong; effective public health measures to reduce local R0 to below 1.6 was necessary, apart from having complete border closure. CONCLUSIONS: Early complete travel restriction is effective in reducing cumulative cases and mortality. However, additional anti-COVID-19 measures to reduce local R0 to below 1.6 are necessary to prevent COVID-19 cases from overwhelming hospital isolation facilities.


Subject(s)
COVID-19 , Hong Kong/epidemiology , Humans , Pandemics , SARS-CoV-2 , Travel
8.
Sci Rep ; 11(1): 4388, 2021 02 23.
Article in English | MEDLINE | ID: covidwho-1099349

ABSTRACT

Patients infected with SARS-CoV-2 may deteriorate rapidly and therefore continuous monitoring is necessary. We conducted an observational study involving patients with mild COVID-19 to explore the potentials of wearable biosensors and machine learning-based analysis of physiology parameters to detect clinical deterioration. Thirty-four patients (median age: 32 years; male: 52.9%) with mild COVID-19 from Queen Mary Hospital were recruited. The mean National Early Warning Score 2 (NEWS2) were 0.59 ± 0.7. 1231 manual measurement of physiology parameters were performed during hospital stay (median 15 days). Physiology parameters obtained from wearable biosensors correlated well with manual measurement including pulse rate (r = 0.96, p < 0.0001) and oxygen saturation (r = 0.87, p < 0.0001). A machine learning-derived index reflecting overall health status, Biovitals Index (BI), was generated by autonomous analysis of physiology parameters, symptoms, and other medical data. Daily BI was linearly associated with respiratory tract viral load (p < 0.0001) and NEWS2 (r = 0.75, p < 0.001). BI was superior to NEWS2 in predicting clinical worsening events (sensitivity 94.1% and specificity 88.9%) and prolonged hospitalization (sensitivity 66.7% and specificity 72.7%). Wearable biosensors coupled with machine learning-derived health index allowed automated detection of clinical deterioration.


Subject(s)
Biosensing Techniques/methods , COVID-19 , Machine Learning , Wearable Electronic Devices , Adult , Female , Humans , Male , Middle Aged , Observational Studies as Topic , Young Adult
9.
PLoS One ; 16(2): e0246732, 2021.
Article in English | MEDLINE | ID: covidwho-1079372

ABSTRACT

BACKGROUND: A high proportion of COVID-19 patients were reported to have cardiac involvements. Data pertaining to cardiac sequalae is of urgent importance to define subsequent cardiac surveillance. METHODS: We performed a systematic cardiac screening for 97 consecutive COVID-19 survivors including electrocardiogram (ECG), echocardiography, serum troponin and NT-proBNP assay 1-4 weeks after hospital discharge. Treadmill exercise test and cardiac magnetic resonance imaging (CMR) were performed according to initial screening results. RESULTS: The mean age was 46.5 ± 18.6 years; 53.6% were men. All were classified with non-severe disease without overt cardiac manifestations and did not require intensive care. Median hospitalization stay was 17 days and median duration from discharge to screening was 11 days. Cardiac abnormalities were detected in 42.3% including sinus bradycardia (29.9%), newly detected T-wave abnormality (8.2%), elevated troponin level (6.2%), newly detected atrial fibrillation (1.0%), and newly detected left ventricular systolic dysfunction with elevated NT-proBNP level (1.0%). Significant sinus bradycardia with heart rate below 50 bpm was detected in 7.2% COVID-19 survivors, which appeared to be self-limiting and recovered over time. For COVID-19 survivors with persistent elevation of troponin level after discharge or newly detected T wave abnormality, echocardiography and CMR did not reveal any evidence of infarct, myocarditis, or left ventricular systolic dysfunction. CONCLUSION: Cardiac abnormality is common amongst COVID-survivors with mild disease, which is mostly self-limiting. Nonetheless, cardiac surveillance in form of ECG and/or serum biomarkers may be advisable to detect more severe cardiac involvement including atrial fibrillation and left ventricular dysfunction.


Subject(s)
COVID-19/physiopathology , Heart Diseases/physiopathology , Adult , Aged , Arrhythmias, Cardiac/blood , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/physiopathology , Biomarkers/blood , COVID-19/blood , COVID-19/complications , Electrocardiography , Female , Heart Diseases/blood , Heart Diseases/epidemiology , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Prospective Studies , SARS-CoV-2/isolation & purification , Survival Analysis , Survivors , Ventricular Dysfunction, Left/blood , Ventricular Dysfunction, Left/epidemiology , Ventricular Dysfunction, Left/physiopathology
10.
Circ J ; 84(11): 2027-2031, 2020 10 23.
Article in English | MEDLINE | ID: covidwho-795948

ABSTRACT

BACKGROUND: SARS-CoV-2 infection is associated with myocardial injury, but there is a paucity of experimental platforms for the condition.Methods and Results:Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) infected by SARS-CoV-2 for 3 days ceased beating and exhibited cytopathogenic changes with reduced viability. Active viral replication was evidenced by an increase in supernatant SARS-CoV-2 and the presence of SARS-CoV-2 nucleocaspid protein within hiPSC-CMs. Expressions of BNP, CXCL1, CXCL2, IL-6, IL-8 and TNF-α were upregulated, while ACE2 was downregulated. CONCLUSIONS: Our hiPSC-CM-based in-vitro SARS-CoV-2 myocarditis model recapitulated the cytopathogenic effects and cytokine/chemokine response. It could be exploited as a drug screening platform.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/complications , Induced Pluripotent Stem Cells/virology , Myocarditis/complications , Myocytes, Cardiac/virology , Pneumonia, Viral/complications , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , COVID-19 , Cell Survival , Cells, Cultured , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Cytokines/metabolism , Cytopathogenic Effect, Viral , Drug Evaluation, Preclinical/methods , Humans , Induced Pluripotent Stem Cells/metabolism , Myocarditis/metabolism , Myocarditis/virology , Myocytes, Cardiac/metabolism , Nucleocapsid Proteins/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , Phosphoproteins , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Virus Replication
11.
BMJ Open ; 10(7): e038555, 2020 07 22.
Article in English | MEDLINE | ID: covidwho-662505

ABSTRACT

INTRODUCTION: There is an outbreak of COVID-19 worldwide. As there is no effective therapy or vaccine yet, rigorous implementation of traditional public health measures such as isolation and quarantine remains the most effective tool to control the outbreak. When an asymptomatic individual with COVID-19 exposure is being quarantined, it is necessary to perform temperature and symptom surveillance. As such surveillance is intermittent in nature and highly dependent on self-discipline, it has limited effectiveness. Advances in biosensor technologies made it possible to continuously monitor physiological parameters using wearable biosensors with a variety of form factors. OBJECTIVE: To explore the potential of using wearable biosensors to continuously monitor multidimensional physiological parameters for early detection of COVID-19 clinical progression. METHOD: This randomised controlled open-labelled trial will involve 200-1000 asymptomatic subjects with close COVID-19 contact under mandatory quarantine at designated facilities in Hong Kong. Subjects will be randomised to receive a remote monitoring strategy (intervention group) or standard strategy (control group) in a 1:1 ratio during the 14 day-quarantine period. In addition to fever and symptom surveillance in the control group, subjects in the intervention group will wear wearable biosensors on their arms to continuously monitor skin temperature, respiratory rate, blood pressure, pulse rate, blood oxygen saturation and daily activities. These physiological parameters will be transferred in real time to a smartphone application called Biovitals Sentinel. These data will then be processed using a cloud-based multivariate physiology analytics engine called Biovitals to detect subtle physiological changes. The results will be displayed on a web-based dashboard for clinicians' review. The primary outcome is the time to diagnosis of COVID-19. ETHICS AND DISSEMINATION: Ethical approval has been obtained from institutional review boards at the study sites. Results will be published in peer-reviewed journals.


Subject(s)
Artificial Intelligence , Coronavirus Infections/diagnosis , Mobile Applications , Pneumonia, Viral/diagnosis , Quarantine , Smartphone , Wearable Electronic Devices , Betacoronavirus , Blood Gas Monitoring, Transcutaneous , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Cloud Computing , Coronavirus Infections/physiopathology , Early Diagnosis , Heart Rate , Hong Kong , Humans , Pandemics , Pneumonia, Viral/physiopathology , Respiratory Rate , SARS-CoV-2 , Skin Temperature , Telemedicine
SELECTION OF CITATIONS
SEARCH DETAIL